

RANS: Highly-parallelised simulator for Reinforcement Learning based Autonomous Navigating Spacecrafts

Matteo El Hariry, Antoine Richard, Miguel Olivares Mendez

Space Robotics Research Group (SpaceR) SnT - University of Luxembourg

October 20, 2023

Introduction

Reinforcement

Learning

- Robotic simulators
- Omniverse Isaac Gym

Methods

- Simulation engine
- Environments&tasks
- DRL agents

Preliminary results

- 3 DoF environment
- 6 DoF environment

Introduction

SpaceR Space Robotics Research Group

Introduction

Reinforcement Learning

The science of learning decision making

- Environment
- Agent
- Policy π

Markov Decision Processes (MDPs).

An MDP is a 5-tuple, < S, A, T, R, μ >

- *S* is the set of all valid states,
- A is the set of all valid actions,
- T is the transition probability function $\rightarrow T(s'|s, a)$,
- R is the reward function $\rightarrow R(s, a, s')$,
- μ is the starting state distribution.

Trajectory (or episode) $\rightarrow \tau = (s, a, s', a', s'', ...)$

Goal \rightarrow $\pi^* = \operatorname{argmax} \mathbb{E}[\mathbb{R}(\tau)]$

π

SpaceR

UNİ. ||

SIT

Motivations

SpaceR

Motivations

7

General advantages

- Flexible parametrization of environmental constraints.
- Easy to tune policies for control: Rewards/Penalties shaping.
- Domain randomization.

Advantages of our RL framework:

- Fast training:
 - ~10 minutes to train a model on a RTX 4090.
 - Approx 40.000 steps / seconds.
 - Large scale testing:
 - Can evaluate over thousands of initial conditions in seconds.
- Comes pre-packaged with examples and a set of different tasks.
- Provides rich visualization:
 - Training: WandB with different metrics
 - Evaluation: Tables + plots.
- Comes with ROS bindings.

SpaceR

UUI. U

SpaceR

Simulation Engine

Isaac Sim: PhysX engine

Training fully on GPU

Substepping strategy

Control frequency < physics engine frequency (5-50, 10-100 Hz)

Free floating conditions

3 DoF (forces in the xy plane) 6 DoF (no constraint)

SpaceR

uni.lu

Environment and Tasks

Environments:

- 3 DoF •
 - **Observations:** Ο
 - $< \cos(\theta), \sin(\theta), vxy, \omega z, tf, td_{1-4} >$
 - Actions: 0

Tasks:

- GoToXY
- GoToPose-2D
- TrackXYVelocity

-0.2

-0.4

0.0

0.2

0.4

6 DoF

Ο

Observations: Ο

SpaceR

UNI.IN SNT

Task	tf	\mathbf{td}_1	\mathbf{td}_2	\mathbf{td}_3	\mathbf{td}_4	\mathbf{td}_5	\mathbf{td}_6	\mathbf{td}_7	\mathbf{td}_8	\mathbf{td}_9
3DoF Go to position	0	Δx	Δy	-	-					
3DoF Go to pose	1	Δx	Δy	$\cos(\Delta\theta)$	$\sin(\Delta\theta)$					
3DoF Track velocity	2	Δv_x	Δv_y	-	-					
6DoF Go to position	0	Δx	Δy	Δz	-	-	-	-	-	-
6DoF Go to pose	1	Δx	Δy	Δz	$\Delta R[0,0]$	$\Delta R[0,1]$	$\Delta R[0,2]$	$\Delta R[1,0]$	$\Delta R[1,1]$	$\Delta R[1,2]$
6DoF Track velocity	2	Δv_x	Δv_y	Δv_z	-	-	-	-	-	-

DRL Agents

Based on the RL Games library

- **PPO** with multi-discrete action space
- Actor-critic architecture
- MLP network with:
 - \circ 3DoF \rightarrow 2 hidden layers of 128 neurons
 - 6DoF \rightarrow 3 hidden layers of 256 neurons
- Training for 2000 epochs ~130M steps

SpaceR

Preliminary Results

3 DoF Evaluations

Evaluation for:

- **PPO** agent
- GoToPose-2Dtask
- Reward function used: exponential
- Training epochs: 2000
- No hyperparameter tuning
- Episodes number: 1024
- Initial spawning distance: [3, 4] m

System properties:

- Mass: ~5 kg
- CoM: [0, 0, 0]
- Thrust force: 1 N
- Radius: 31 cm
- Shapes: sphere or cylinder

SpaceR

uni.lu

SIT

3 DoF Evaluations

SpaceR

Space Robotics Research Group

uni.lu

3 DoF Evaluations

SpaceR

Space Robotics Research Group

uni.lu

SNT

Min Stepring

6 DoF Evaluations

SpaceR

Space Robotics Research Group

Thank you

Questions?

More information and videos are available https://www.spacer.lu/

iSpaRo 2024 June 24-27, Luxembourg SAVE the DATE

https://github.com/elharirymatteo/RANS

isparo.space

SpaceR

UNİ.

