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Reinforcement Learning
Introduction

The science of learning decision making
● Environment
● Agent
● Policy   π

Markov Decision Processes (MDPs).
An MDP is a 5-tuple, < S, A, T, R, μ >

● S is the set of all valid states,
● A is the set of all valid actions,
● T is the transition probability function → T(s’| s, a) ,
● R is the reward function  → R( s, a, s’) ,
● μ is the starting state distribution.

Trajectory (or episode) → τ = (s, a, s’, a’, s’’, …)

Goal    → π* = argmax 𝔼[R(τ)]
π

https://en.wiktionary.org/wiki/%F0%9D%94%BC
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Motivations
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General advantages

Motivations

● Flexible parametrization of environmental constraints.
● Easy to tune policies for control: Rewards/Penalties shaping.
● Domain randomization.

Advantages of our RL framework:
○ Fast training:

■ ~10 minutes to train a model on a RTX 4090.
■ Approx 40.000 steps / seconds.

○ Large scale testing:
■ Can evaluate over thousands of initial conditions in seconds.

○ Comes pre-packaged with examples and a set of different tasks.
○ Provides rich visualization:

■ Training: WandB with different metrics 
■ Evaluation: Tables + plots.

○ Comes with ROS bindings.
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Methods
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Simulation Engine

Methods

Isaac Sim: PhysX engine 

Training fully on GPU

Substepping strategy 
Control frequency  < physics engine frequency (5-50, 10-100 Hz)

Free floating conditions
3 DoF (forces in the xy plane)
6 DoF (no constraint)
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Environment and Tasks

Methods

Environments:
● 3 DoF

○ Observations:
< cos(θ), sin(θ), vxy, ωz, tf, td1−4 >

○ Actions:
T1-8 ∈ [0,1]

Tasks:
● GoToXY
● GoToPose-2D
● TrackXYVelocity

● 6 DoF
○ Observations:

< 6D, vxyz, ωxyz, tf, td1−9 >
○ Actions:

T1-16 ∈ [0,1]

● GoToXYZ
● GoToPose-3D 
● TrackXYZVelocity 
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DRL Agents

Methods

Based on the RL Games library

● PPO with multi-discrete action space

● Actor-critic architecture 

● MLP network with:

○ 3DoF → 2 hidden layers of 128 neurons

○ 6DoF → 3 hidden layers of 256 neurons

● Training for 2000 epochs ~130M steps
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Preliminary
Results
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3 DoF Evaluations
Experimental Setup & Results

Evaluation for:
● PPO agent
● GoToPose-2D task
● Reward function used: exponential
● Training epochs: 2000
● No hyperparameter tuning
● Episodes number: 1024
● Initial spawning distance: [3, 4] m

System properties:
● Mass: ~5 kg
● CoM: [0, 0, 0]
● Thrust force: 1 N
● Radius: 31 cm
● Shapes: sphere or cylinder
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3 DoF Evaluations
Experimental Setup & Results
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3 DoF Evaluations
Experimental Setup & Results
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6 DoF Evaluations
Experimental Setup & Results
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Thank you
Questions ?

iSpaRo 2024
June 24-27, Luxembourg

SAVE the DATE

isparo.spacehttps://github.com/elharirymatteo/RANS

More information and videos are 
available https://www.spacer.lu/
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